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Abstract. We study the dynamics of the SK model modified by a small non-Hamiltonian
perturbation. We study aging, and we find that on the timescales investigated by our numerical
simulations it survives a small perturbation (and is destroyed by a large one). If we assume that
we are observing a transient behaviour, the scaling of correlation times versus the asymmetry
strength is not compatible with the one expected for the spherical model. We discuss the slow
power law decay of observable quantities to equilibrium, and we show that for small perturbations
power-like decay is preserved. We also discuss the asymptotically large time region on small
lattices.

1. Introduction

The non-Hamiltonian generalization of the dynamics of the Sherrington Kirkpatrick (SK)
model is an interesting problem. The main question is if the complex dynamical behaviour
of the SK model (implying aging, slow power-like decays and related effects) is stable
under a small non-Hamiltonian perturbation.

The question is very relevant, since in many physical systems we would expect the
presence of non-Hamiltonian effects: would a replica broken dynamics survive such small
effects? We believe that this is an important question, and we will later give indications
towards a positive answer.

The problem has been analysed in detail in many papers, but definite conclusions are
difficult to reach. Crisanti and Sompolinsky [1, 2] have studied a simplified version of the
mean-field, spherical model (see later in the text), and have shown that for this model a
small perturbation is enough to destabilize the glassy phase. For large asymmetry two other
studies agree with this conclusion [3, 4].

The fully asymmetric model has been studied in detail in [1, 4–6]. TheT = 0 case has
been discussed in [7–10]. Techniques such as damage spreading have also been used [11]
(by reaching conclusions about the possible survival of a complex behaviour similar to the
ones we reach here). Thep-spin model (withp > 2) has also been studied recently [12].

Here we will try to distinguish two different aspects of the non-Hamiltonian
generalization of the SK model. On the one hand we will discuss its dynamical behaviour, by
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focusing on aging-like effects. On the other hand we will look at the long timeequilibrium
limit of the model, on smaller lattices. We will compare our numerical results with the
spherical model results, and will discuss the possibility that their main features could also
be valid for the SK model.

In section 2 we remind the reader of some theoretical results. In section 3 we give the
definitions we will need later. In section 4 we discuss aging-like effects. In section 5 we
show slow, power law decays. These two sections deal with dynamic behaviours: we use
large lattices and we stay far from equilibrium. In section 6 we discuss long equilibrium
runs, on small lattices and in section 7 we draw our conclusions.

2. Theory

Even though, as we have said, a large amount of work has been devoted to the study of
non-Hamiltonian disordered models [1–12], the main results concerning the general case of
the finiteT spherical spin model with non-symmetric couplings have already been obtained
in [1], while many of the other works deal with special cases such as theT = 0 dynamics
or the fully asymmetric case. Here we are interested in the finiteT dynamics of a SK model
(as opposed to the spherical model) that is perturbed by a small, non-Hamiltonian term, and
as we will discuss not much is known about this case.

In order to make the situation clearer we shall give a brief outline of the results obtained
in [1, 2], that are based on the dynamic mean-field formalism of [13].

The generalization of the usual spin glass dynamics is done by using the couplings

Ji,j = JS
i,j + kJ AS

i,j (1)

whereJ S
i,j = JS

j,i , andJAS
i,j = −JAS

j,i (with a definition of the asymmetry parameterk slightly
different from theε we will use later, see (17)). BothJ types have zero average over the
disorder and

JS2 = JAS2 = J 2

N

1

1+ k2
(2)

where the overline indicates the average over the disorder and brackets will denote
the thermal average. One writes the non-Hamiltonian generalization of thesoft spin
(σi ∈ [−∞,+∞]) SK mean-field model, whose dynamics is governed by the Langevin
equation

0−1
0

∂

∂t
σi(t) = −r0σi(t)− δV (σi(t))

δσi(t)
+
∑
j

Ji,j σj (t)+ hi(t)+ ξi(t) (3)

whereJ contains the two contributions of (1). The potential controls fluctuations in the
amplitude of the soft spinsσi(t), h is a local external field, andξ is a white noise, with

〈ξi(t)ξj (t ′)〉 = 2T

00
δ(t − t ′)δi,j (4)

whereT represents temperature (for this model, wherea priori one cannot expect to reach
thermal equilibrium). The autocorrelation

C(t) = 〈σi(t + t ′)σi(t ′)〉 (5)

and the response function

δ〈σi(t + t ′)〉
δhi(t ′)

∣∣∣∣∣
h=0

, t > 0 (6)
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are the main dynamical observable quantities. The static susceptibilityχ is defined as

χ ≡
∫ +∞
−∞

dt G(t). (7)

After taking theN →∞ limit one can use the approach of [13] and write the mean-field
equations of motion

0−1
0

∂

∂t
σi(t) = −r0σi(t)− δV (σi(t))

δσi(t)
+ hi(t)+ φi(t)+ J 2 1− k2

1+ k2

∫ t

−∞
dt ′G(t − t ′)σi(t ′)

(8)

whereφi(t) is a Gaussian variable with zero mean and variance

〈φi(t)φi(t)〉 = 2T

00
δ(t − t ′)+ J 2C(t − t ′). (9)

The detailed treatment done in [13] cannot be repeated in the casek 6= 0, where things
become too complicated. In contrast, the spherical model, orp-spin model (here with
p = 2), can still be treated in a satisfactory way. The spherical model (that can be seen as
a mean field of the mean field, or, simply, as a different model from SK) can be defined
through the Langevin equation

0−1
0

∂

∂t
σi(t) = −rσi(t)+

∑
j

Ji,j σj (t)+ hi(t)+ ξi(t) (10)

where we have only kept the quadratic part of the potential (that had already been extracted
in the r-term in (3)), and where now the parameterr is not a free parameter but such that

1

N

∑
i

σi(t)
2 = 1. (11)

In this approach one easily checks that for the symmetric model,k = 0, χ = 1/T for
T > Tg (whereTg is the first temperature whereq takes a non-zero expectation value).
There is a spin glass transition atTg = 1, andχ = 1 for T 6 Tg.

For the asymmetric casek 6= 0 at finiteT one finds that there cannot be any transition
(we will not discuss what happens atT = 0 here, since in our numerical simulations we
always investigate the system at finiteT ): q = 0 for all T > 0. The reason is thatG(ω) is
singular whenχ2 = 1− k2/1+ k2, while C(ω) is singular atχ = 1. That implies thatχ
stops at 1 in order to not violate finiteness of correlation functions.

Finally, we recall that [1] finds that for smallk the correlation timeτ diverges like

τ ' k−6. (12)

The way of reasoning, that we explained two paragraphs ago, would also suggest (as
found by Hertzet al [3]) that the same thing happens in the full SK mean-field model.
But in the case of the SK model this is only a qualitative argument: for example replica
symmetry breaking could change things: for example Crisanti and Sompolinsky [1] discuss
the possible appearance of a hierarchical distribution of large correlation times, and of a
slow component not only inC(ω) but also inG(ω). In the rest of this paper we will study
the case of the full fledged SK model, in the regime where the Parisi solution characterizes
the symmetric model.

Cugliandoloet al [12] found that the result of [1] is also valid when one does not
assumea priori time translational invariance [14], for ap-spin model withp > 2. They
are interested in the behaviour of thep-spin model forp > 2 (that is non-marginal, and
in some sense more general than the SK model). They also find that (forN < ∞) in the
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p-spin model there are deep stable states that show a complex dynamical behaviour even
in the non-symmetric case.

At last we note that Parisi [4] proposed to use spin glass systems with non-Hamiltonian
perturbation as a way of building memories that can be confused, and he suggested that the
asymmetry can be crucial for the process of learning.

3. Definitions

We will give here all the definitions that are relevant for the model discussed in this paper.
We consider an infinite range model, based on spin variablesσi = ±1, wherei = 1, . . . , N
labels site. The couplingsJi,j = ±1/

√
N with uniform probability (both the symmetric

couplingsJ (S)i,j and the non-symmetric onesJ (NS)
i,j ). The usual SK version of the mean-

field spin glass is defined by a probability distribution for the spin variables built over a
Hamiltonian

P({σ }) ' e−βH = eβ
∑

i σi
∑
j J

(S)
i,j σj ≡ e

∑
i σiFi (13)

whereJ (S)i,j are the usual quenched, symmetric random variables, withJ
(S)
i,j = J (S)j,i .

We run a local dynamics, usually known asheat bath: each spinσi is in turn equilibrated
with the field given by the other spins. The probability for the new spinσi to be+1 after
the update is

P(σi = +1) = eFi

eFi + e−Fi
. (14)

We measure the expectation value (thermal and over the disorder) of the internal energy at
time t

E(t) = 1

N

〈∑
i

σiFi

〉
. (15)

We always follow two copies (α andβ) of the system in a given quenched realization of
the couplings, and we compute the overlap

q(t) ≡ 1

N

〈∑
i

σ
(α)
i σ

(β)

i

〉
. (16)

In the non-Hamiltonian case one updates the spins under the field

Fi ≡ β 1√
1− 2ε + 2ε2

∑
j

[(1− ε)J (S)ij + εJ (NS)
ij ]σj ≡ F (S)i + F (NS)

i (17)

where nowJ (NS)
i,j is drawn independently fromJ (NS)

j,i , and we have calledF (S)i the part of

Fi proportional toJ (S) andF (NS)
i the part proportional toJ (NS). This is the model we are

going to analyse.ε andk of [1] have the same scaling behaviour when they are small, and
play the same role.

In the case of the non-Hamiltonian extension of the dynamics we also measure separately
the symmetric and the non-symmetric contributions to the energy, i.e.

E(S)(t) = 1

N

〈∑
i

σiF
(S)
i

〉
E(NS)(t) = 1

N

〈∑
i

σiF
(NS)
i

〉
. (18)

We define the time-dependent correlation function

c(tw, tw + t) ≡ 1

N

N∑
i=1

〈σi(tw)σi(tw + t)〉. (19)
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Figure 1. Expectation values of the total energy operator, of the symmetric part and of the
non-symmetric part as a function of the asymmetry parameterε.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

We measure the correlation functionsc(tw, tw + t) for all tw and t of the form 2n, with n
being an integer. All the data analysis we will describe in the following will be based on
the knowledge of thec(tw, tw + t) at these times.

To try to quantify the effect of a givenε value we plot in figure 1 the expectation
value of the total energy operator (empty dots), of its symmetric part (full dots) and of
the non-symmetric part (plus symbols). Error bars are smaller than the symbols. There is
an important difference between distinguishing data atT = 0.2 and those atT = 0.5 (all
taken from averages over the last two thirds of our total Monte Carlo sweeps). Data at
T = 0.5 on a small lattice,N = 256, are at equilibrium, in the sense that their average
does not depend on time anymore. In contrast, data atT = 0.2 are for someε values
out of equilibrium (see fits later on): but this is a small effect, not relevant for the present
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purpose. Atε = 0.0 obviously the total energy coincides with the symmetric contribution,
while the non-symmetric part is zero by construction. Asε becomes different from zero
the non-symmetric part acquires a non-zero expectation over the dynamics: atε = 0.1 it
remains very small, while atε = 0.5 it is of the same order of magnitude as the symmetric
contribution. TheT = 0.2 andT = 0.5 cases look, from figure 1 to be very similar.

The computer runs discussed in this paper have taken a few months to complete even
when using computers of the class of a Pentium 133 or of a 3000/300 Digital α Unix
workstation.

4. Aging

First we will try to understand the dynamical behaviour of such systems, by studying aging
phenomena [15]. We will start by looking, as a reference point, at the usual Hamiltonian
SK model.

We will look as usual at the time-dependent correlation functionc(tw, tw + t). Our
dynamical runs (where we do not try to reach thermal equilibrium) have been done at
T = 0.2 (for the SK model,ε = 0, Tc = 1). We have studied systems with different
numbers of sites, up toN = 1024 (the case we will discuss later). ForN = 1024 we have
20 samples for each differentε value.

In figure 2 we plotc(tw, tw + t) as a function oft , for different values oftw (lower
curves depict smallertw values). HereN = 1024,ε = 0 (i.e. the Hamiltonian case of the
usual SK model). Error bars come from sample-to-sample fluctuations. The system starts
from a disordered configuration, and we let it evolve. The fact that the correlation function
is not time-translational invariant is very clear:c(tw, tw+ t) is not only a function oft . For
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 103 104

ε=0, N=1024

c,tw=2
c,tw=8
c,tw=32
c,tw=128
c,tw=512
c,tw=2048
c,tw=8192

c(
t w

 ,
t w

+
t)

t

Figure 2. The spin–spin time-dependent correlation functionsc(tw, tw+ t) as a function oft , for
different values oftw (lower curves for smallertw values). There were 20 samples,N = 1024,
ε = 0 (i.e. the Hamiltonian case of the usual SK model). Error bars are from sample-to-sample
fluctuations. This plot is on a log–log scale.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)
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Figure 3. As in figure 2, but versust/tw .

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

small values oftw the system decays fast, and the decay rate slows down when one looks
at high values oftw.

Here we are in the same situation as in [16] for the simulations of the hypercubic model:
on the observed timescalesq2(t) (as measured from two copies of the system in the same
noise realization) stays small (6 0.04). The system has not crossed the very high barriers
that was encountered on the way. We will discuss that in more detail in the following
sections, together with the fact that the energy is decaying to its asymptotic value with a
very good power law (atε = 0 andN = 1024 the exponent is of order 0.4).

In figure 3 we plot the same data as a function oft/tw (again on a double log scale).
This is the usual search for an aging-like scaling. Here the scaling of the data is reasonable
but obviously not perfect: scaling violations are clearly present, but a detailed study of this
phenomenon is beyond the scope of this study. The plateau (to be) fort < tw is connected
to the value of the same state overlapqEA† (see [17] and figures 3–5 of [18]). We remark
that these results are compatible with those obtained by Rossetti [19] on very large lattices
(SK model up toN = 8192) and (when looking in details at the graphs: the aging curves
tend to separate soon after the crossing point for all values oftw) with the ones obtained by
Cugliandoloet al [16] on the alternative, hypercubic definition of the mean field. We just
repeat that violations of a perfect aging scaling are quite clear here. Definitely the usual
SK model does not show any easily explainable form of scaling.

We will now try to analyse what happens in the non-Hamiltonian dynamics. We start
with the non-Hamiltonian dynamics by looking at a large perturbation: we useε = 0.4, 20
samples andN = 1024. In figure 4 the correlation functions for different values oftw (here
on a simple linear–linear scale). It is clear that things are now very different. The decay
at very small waiting times is faster than for largertw, but already fortw 6 32 there is
very little dependence ofc over tw. The curves from differenttw are collapsing on a same

† We thank Juan Ruiz-Lorenzo for an interesting conversation on this subject.
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Figure 4. As in figure 2, butε = 0.4, and it is plotted on a linear–linear scale.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)
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Figure 5. As in figure 2, butε = 0.4, and it is plotted on a linear–log scale.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

universal decay curve.
Since we are (maybe) expecting here an exponential decay of the time-dependent

correlations (but we will see this is a far from evident fact) we plot in figure 5 the correlation
functions for different values oftw on a linear–log scale. Here we also include the error
from sample-to-sample fluctuations. The lines would be asymptotically straight lines in
case of an asymptotic exponential decay. The reader can start to observe that in this case
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Figure 6. As in figure 2, butε = 0.1.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)
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Figure 7. As in figure 3, butε = 0.1.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

(ε = 0.4) in all the time range where we can determine aneffectivet-dependent correlation
time τe(t) (by looking, for example at the local gradient of the logarithm of the correlation
function), suchτe(t) is increasing (i.e. the curves are bending up in the whole region where
we have been able to determine them with good statistical precision).

Other data forε going from 0.3 to 0.5 give very similar suggestions. Our first conclusion
can be reached at this point: systems with large non-Hamiltonian perturbations do indeed
have a quite different, typically non-aging, dynamical behaviour, but one has to be careful
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Figure 8. As in figure 2, butε = 0.2.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

since it looks difficult to pinpoint a real exponential decay.
Let us now turn to a reasonably small value of the non-Hamiltonian perturbation. We

selectε = 0.1, that is not too small: the non-symmetric couplings are coupled with a
strength 0.1 timesβ while the symmetric couplings interact with a strength of 0.9. These
data turn out indeed to be dramatically similar to the ones atε = 0. Figures 6 and 7 are
analogous to figures 2 and 3; the similarity is self-explanatory. Later we will try to quantify
the differences and to elucidate their meaning. By now we observe that for large lattices
(N = 1024 for the infinite-range model is a large lattice, since one has 1 000 000 couplings)
and long times (we follow the system up tot andtw of order 16 384) the model withε = 0.1
shows an aging behaviour as good as the one observed for the pure SK model.

Before discussing a more quantitative analysis of these data, we shall state a few
comments about an intermediate case,ε = 0.2. Here the pattern ofc(tw, tw + t) is different
from both the usual aging case (like the one we find forε = 0.0, 0.1) and the typical fast
decay to an equilibrated state (seeε = 0.4, even if we will see that even here things are
more complex).

In figure 8 the correlation function is a function oft . The pattern is reminiscent of an
aging pattern, even if for largetw the situation is not so clear. The plot ofc versust/tw in
figure 9 is more innovative: here the typical crossing one expects att/tw ' 1 is moved to
larger values oft/tw, which increase withtw. The scaling is different from the one in the
Hamiltonian case.

It is interesting to note, as a basis of the discussion we will present in one of the next
paragraphs, that this is not only an effect we detect at hightw values. Already for very
short tw (figures 2 and 8, for example) we find a crossing att of order 10. We also want
to notice that, looking at their value, in the regiont > tw the ε = 0.2 data seem to show a
better puret/tw scaling than the pure ones: but this is probably not a very relevant feature
(that could be typical of a transient behaviour).

The similarity of the correlation functions in the pure SK model and the ones in the
model with ε = 0.1 calls for a better scrutiny. The very remarkable similarity of the two
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Figure 9. As in figure 3, butε = 0.2.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)
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Figure 10. The ratios ofc(tw, tw + t) at the samet and tw with ε = 0 andε = 0.1 versust/tw
on a linear–log scale.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

sets of functions has to be quantified in some way. In order to do that we compute the
ratios of the correlation functions at the samet and tw with ε = 0 andε = 0.1, and we
plot them in figure 10. The correlation functions are indeed very similar, but for increasing
values oft/tw we start to see a small difference (typically the higher points at fixedt/tw
are for highert values). We do not plot the statistical errors, which would blur the plot in
an extreme manner, but even if any individual ratio is compatible with one, the large time
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Figure 11. As in figure 10, butε = 0 overε = 0.2.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

growth of the ratios is clear and statistically significant: at large times the correlations for
the ε = 0.1 case start to decrease faster than for the pure SK case. It is a very small effect,
and its meaning is not unambiguous: it could signify that we are exiting a transient phase
and aging is ending, or it could just be an irrelevant renormalization (a shift of the effective
temperature of the system). But the effect is clear, and we note it here.

In figure 11 we plot the same ratio, but here theε = 0 value is divided times theε = 0.2
value. Note that the vertical scales of this and the former plots are very different. Here the
faster decay of the non-Hamiltonian case is very clear: fort/tw of order 104 the ratio is of
order two.

Two remarks: first the departure from a ratio close to unit comes for theε = 0.1 case
quite late. The departure from unit is far more pristine atε = 0.2. For example, one can
notice that a value of 1.05 is reached att/tw ' 10 in the first case, and of order 10−3−10−2

in the second case.
If one tries using, in this way, a very qualitative definition of anε-dependent correlation

time one obtains a divergence that is faster than the one obtainable with anε−6 scaling (see
later). It should also be noticed that this effect is not dominated by finite size effects: on
different volumes we get very similar results.

The next natural thing to do is to check for correlation times. The Crisanti–Sompolinsky
[1, 2] result for the spherical model suggest a behaviour

τ ' ε−6 (20)

and one can proceed by trying to support or falsify this expectation. In this case one would
start from the largerε values, where the asymptotic decay looks better exposed, and try to
go down to lowerε values.

Determining correlation times is typically not as easy as one expects. The main caveat is
indeed that in a numerical simulation at best one can establish upper bounds on correlation
times: correlation times that are larger than the simulation time cannot be detected. In the
case of systems which exhibit (or could exhibit) an aging behaviour things are even more
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Figure 12. We plot the time needed fromc to reach the value 0.7, andε−6. As a function of
ε, on a double log scale.

complex sincea priori one cannot average overtw. Only after checking that we are in
a region of time translational invariance are we allowed to average over different waiting
times.

The first, easy approach, consists of defining the correlation time as the time after
which the time-dependent correlation function reaches, down from 1, a given value, sayc̃.
In figure 12 we plot the time needed forc to reach the value of 0.7, andε−6 as a function
of ε (we have also done the same analysis forc̃ = 0.5). It would be incorrect to average
over tw ’s: only a posteriori, after checking that we are in an asymptotic region of a simple
phase where time-translational invariance holds, would that be justified. We have checked
indeed that doing that can lead to a false scaling. In figure 12 we have only used the largest
tw points available to us (tw = 214). We have normalized the data in the plot such that the
data points coincide at the higherε value (ε = 0.5). It is clear that already atε = 0.3 the
ε−6 scaling does not hold (we are using a double log scale!). Atε = 0.2 the discrepancy
from anε−6 scaling is severe, and forε = 0.1 we cannot determineτ since the correlation
function with tw = 214 does not reach the value of 0.7. Anyhow, hereτ would be so large
to be completely incompatible with anε−6 scaling.

When using a lower threshold (that should not underestimate the true correlation time
so much) the situation is even more dramatic. In this case we can only determineτ for
ε > 0.3, and the deviation from anε−6 scaling is more severe.

From this, very naive analysis, we can already conclude that if we could define a
correlation timeτ for ε → 0 it would be growing far more dramatically thanε−6. The
analysis of section VI.A in [2] is in this sense probably incorrect since the authors average the
correlation function over smalltw values (but they were not working in identical conditions
to us, both because of the exact form of the non-Hamiltonian contribution to the force and
since they were atT = 0.5).

Since the question of correlation times, of their scaling behaviour and of the functional
form of the time-dependent correlation functions of the non-Hamiltonian system, is of crucial
interest, we have decided to perform a careful analysis of this issue. The standard approach
for trying to expose clearly an asymptotic exponential behaviour is based on the definition
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Figure 13. τeff(t) versust for ε = 0.5 and 0.4.

of a time-dependent effective correlation timeτeff(t). If we are in the asymptotic large time
regime of a phase with an exponential decay of time-dependent correlation functions

c(t) ' Ae−
t
τ (21)

and

τeff(t) ≡
(

1

t
log

(
c(t)

c(2t)

))−1

= τ (22)

τeff(t)→ τ at large times.
We have hinted before that already figure 5 suggests that we cannot, from the data

from our numerical simulations, exhibit a clean exponential behaviour even atε = 0.4. In
figure 13 we plotτeff(t) versust for ε = 0.5 and 0.4.

We have averaged curves for differenttw in the region where the dependence overtw is
smaller than the statistical error (16 forε = 0.5, 64 for ε = 0.4, 512 forε = 0.3, 2048 for
ε = 0.2, while for ε = 0.1, 0.0 we have only selected the largesttw). We plot the larger
ε values since for lowerε it is quite clear that we are not observing an exponential decay
at all. But, as we said, already for largeε the effective correlation time steadily increases,
as a function oft , in the time region we can handle safely. It is not clear from our data
whetherτeff(t) is reaching a plateau, but it is clear that where we can determine it with
good precision it has not reached an asymptotic value.

We have also tried global fits to an exponential decay, by changing the number of data
points used in the fit. They are quite bad for allε values (but maybe atε = 0.5 where the
noise threshold is reached after only a few data points). If discarding enough points close
to the origin maybe an exponential fit is preferred atε = 0.5 and 0.4, while a power fit is
preferred atε = 0.3. For lowerε values one cannot find a simple behaviour that fits the
data well.

The evidence presented in this section does not completely clarify the main issue. On the
timescales we can observe that there is still aging for small non-Hamiltonian perturbations,
while for large perturbations aging disappears. Still, even in the case of large perturbations
a pure exponential behaviour is slow to emerge. Somehow it is clear that we are dealing
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with a system with a very complex dynamics, even if it is difficult to establish whether
we are dealing with a transient behaviour or with an asymptotic effect. But complexity is
strong, and manifests itself with different signatures that we have discussed in some details,
in all the parameter range we have explored. If we try to define a correlation time, even
where it is not clear we could define one, it turns out to diverge faster than a spherical
spin model analogy would predict. That could be connected to a signature of the replica
symmetry breaking pattern of the Parisi solution.

Maybe the most important question we are not able to answer in a precise way is: is
something drastic happening when going from large non-Hamiltonian perturbations (where
we know that we will eventually get a non-aging behaviour) to small perturbations? It is
very difficult to discriminate between a transient behaviour on a very long timescale and a
true asymptotic behaviour. If any, our feeling about this issue is that yes, things atε = 0.1
are different from things atε > 0.2. This is based both on the scaling ofτ(ε) that we
have discussed before (that is not compatible even with the very high power predicted by
the spherical spin model solution), and by a hand-waving argument we give now. Let us
be very conservative and say thatτ(ε = 0.2) is of order 300 (this is by far a lower bound,
and τ is probably, if any, far larger than that), andτ(ε = 0.1) > 10 000 (this is obvious).
At ε = 0.1 for all times in our measurement windows (O(214)) we see a very good aging.
We would expect that atε = 0.2, at least fort � 300, we should have a transient aging,
that could die out later on. We do not have that at all. Already attw = 2, 4 aging curves
at ε = 0.2 behave in a way that is dramatically different to usual aging. The argument of
the transient behaviour was used in [1] to describe the situation at finiteε, and it surely
works for the spherical spin model: but here we have evidence that the argument does not
apply. Because of that, the wrong scaling and the further evidence we will present in the
next section we cannot exclude that something changes at a critical value ofε.

5. Power laws

Slow relaxation towards thermal equilibrium expectation values is one of the typical
signatures of disordered systems. First, Gardneret al [20] have pointed out and quantified
this kind of effect in spin glasses. Eisfeller and Opper [21] have introduced a powerful
dynamical functional method that allows us to compute with good precision the power
exponents atT = 0. Ferraro [22] has generalized this work toT 6= 0. Work based
on numerical simulations [19, 23, 24] has made these computations detailed: one can
determine with a reasonable accuracy power exponents even atT 6= 0, both for the remnant
magnetization and for the energy decay.

We have used the decay towards equilibrium of typical observable quantities (such as
the internal energyE(t) and the squared overlapq2(t)) as a probe of the existence of a
complex behaviour even for the non-Hamiltonian,ε 6= 0 case. We have measured and tried
to fit the time-dependent internal energy

E(t) ' E∞ + At−η (23)

and have analysed the slow growth ofq2(t) towards its equilibrium value. On general
grounds we notice that the exponents we have determined for the energy are quite stable:
they do not seem to depend much on the lattice size (we have checked different sizes) and
over the time window we use to fit them.

First we present the results from our runs atT = 0.2, the same as we discussed in the
former section of this note. We start fromE(t). At ε = 0.0 andε = 0.1 a power fit is
perfect, while an exponential decay is clearly ruled out. In figure 14 we plot the data with
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are for the best power fits.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

the best fits forε = 0.0 andε = 0.1. The error here is of 1–3 on the last digit. It is clear
that the two sets of data are compatible in the statistical error: a small shift in the effective
temperature of the system is the best way to explain the small shift in the data (the situation
will be similar for higherT values). Also atε = 0.2 and 0.3 we get a perfect power fit,
with an exponent of 0.39 and 0.48 respectively, and an exponential behaviour is ruled out.
ε = 0.4 is an intermediate case, where both a power fit (that would give an exponent of
0.63) and an exponential fit are not very good. Atε = 0.5 the exponential fit is definitely
better, and the energy clearly reaches its asymptotic value.

For zero and smallε we only see the very slow growth ofq2(t), that is very far from its
asymptotic value. Atε = 0.0 andε = 0.1 the slow growth is compatible with a logarithmic
behaviour. For higherε values one starts to seeq2(t) approaching an asymptotic value,
but in this case, even when the asymptotic value is very clear, a power fit does not work
well. It is interesting to notice that somehow the functional form of the time dependence of
q2(t) is very different from the one of the energyE(t), where the power law is very clear.
As we will also show forT = 0.5 with figure 16 the best way to describe the behaviour
of q2(t) would be by a very slow logarithmic growth that stops abruptly after reaching its
finite volume asymptotic value.

We have also studied the system at higherT = 0.5 and smaller volumeN = 256, by
running longer simulations (106 steps, and 10 samples for eachε value). That has been done
in order to reach equilibrium atε = 0.0 and for a comparison with finiteε (to check, for
example, if the finiteε system converges to an effective stable Boltzmann-like probability
distribution, see (6)). The situation is very similar to the case ofT = 0.2, the difference
being that here the energy and theq2 plateau’s are very clear already atε = 0.0 (equilibrium
for both energy andq2 are apparently reached after O(103) steps), and the exponents of the
power decay are higher (since we are at higherT ). In figure 15 we showE(t) at ε = 0.0
and 0.1 with the best power fit (errors are up to O(5) on the last digit). Again the results are
very similar, and the power fit is very good. An exponential fit is not able to describe the
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(This figure can be viewed in colour in the electronic version of the article; see
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Figure 16. q2(t) versust (linear–log scale) forε = 0.0 and 0.1.N = 256,T = 0.5.

data. Here, already atε = 0.2 convergence to equilibrium is very fast and an exponential
fit works reasonably. Atε = 0.4 the best exponent of the power fit is close to one. At
ε = 0.5 the exponential fit is perfect.

q2(t) converges to a clear plateau, but as we said before it is difficult to find a correct
functional form to describe such time dependence. In figure 16 we showq2(t) at ε = 0.0
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and 0.1, where a power fit does not work well. The situation is qualitatively very similar
at higherε values, butq2(t) reaches lower plateau values. Atε = 0.4 the asymptotic value
of q2 is very small. Atε = 0.5 the asymptotic value ofq2 is 0.02, i.e. fully compatible
with zero.

Therefore, slow convergence to equilibrium is clear for different values ofT < T (ε=0.0)
c .

We can never see, in the time ranges we investigate, any significant difference when going
from ε = 0.0 to ε = 0.1. It also has to be noticed that in the case where we reach thermal
equilibrium for ε not too large the expectation value ofq2 at equilibrium is far larger than
a pure finite size contamination: forN = 256 〈q2〉 is clearly non-zero in a largeε range.
In the next section we will try to understand if this is a finite size effect or not.

6. Equilibrium

In the former two sections we have analysed the dynamical properties of the non-
Hamiltonian dynamics. In this section we have taken the complementary point of view
and, by studying small lattices on longer timescales we have investigated the equilibrium
properties of the model. Even if the model is not defined from a Hamiltonian we can define
its equilibrium properties from the large time limit of the dynamics. We have measured
the probability distribution of the overlapP(q), and compared the SK model with the non-
Hamiltonian dynamics. We have systematically analysed the dependence of the equilibrium
properties from the finite volume (up to the largest volume on which we have been able to
thermalize the system, see later).

We have worked atT = 0.5, running 106 full sweeps of the lattice and using the second
two thirds of the sweeps for measuring equilibrium properties. We have selected, as before,
ε going from 0 to 0.5 with increments of 0.1.

We have usedN = 64, 128 and 256 (respectively with 20, 10 and 10 samples for
eachε value). In all case we have checked that all the relevant observable quantities (for
exampleE(t), q2(t)) have reached a very clear plateau, where they are stable in all of
the measurement region. We have also analysed directly the sample-dependent probability
distributionsPJ (q) checking the symmetry sample-by-sample (a very strong check). At
ε = 0, where the thermalization is more difficult, thePJ (q) is very symmetric atV = 64
on all samples. AtV = 128 there is again a very good symmetry (the maximum discrepancy
is of the order of 25% of the double peak height. AtV = 256 some of the samples have
quite an asymmetricP(q), but for all 10 systems it looks very plausible that true equilibrium
has been reached: the averageP(q) is nicely symmetric. We would not have succeeded to
thermalize larger systems.

In figures 17–19 we plotP(q) for different ε andN values (always atT = 0.5). It is
clear that the double peak structure of the Parisi broken phase of the SK model, and that
for high ε values, one obtains a trivial distribution centred aroundq = 0.

It is more interesting to follow, for example, theε = 0.3 case as a function ofN . Here
from a (already quite soft) double peak structure atN = 64 one goes to a broad peak around
q = 0 atN = 256. At ε = 0.2 there is the same kind of effect: a strong double peak at
N = 64 softens atN = 128. AtN = 256 we are left with a flat plateau includingq values
going from−0.5 to 0.5.

In the caseε = 0.1 once again we get results that are very similar to the ones we get
for the pure SK model. In ourN range we cannot observe any systematic effect.

To make this point clearer, in figure 20 we plot the ratio of theP(q) for the ε = 0.1
model and the pure SK model as a function ofq, for the threeN values that we have
analysed. Apart from large fluctuations we cannot see any systematic trend. For smallq
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Figure 17. P(q) versusq for differentε values,N = 64. In (a) the fullP(q) curve shows where
the quality of the symmetry underq → −q gives a measure of how good our thermalization
was. (b) shows the symmetrizedPs(q).

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

on the large lattice we have a quite large ratio, but the statistical undetermination is large
in this case.

In this section we have been exploring features of the model that are different from the
dynamical issues we were discussing before. Here we are discussing equilibrium properties:
the system could very well have a complex dynamics on divergent timescales but a trivial
large time limit. Still, what we find is that again, on the volume scales we are able to
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Figure 18. As in figure 17 butN = 128.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

disentangle numerically, there is no difference among the SK model and the one with a
small non-Hamiltonian perturbation. Also we notice that, at least for large perturbations,
the small lattices fake a non-trivial structure that disappears in the infinite volume limit. The
same effect could make trivial the theory with small perturbations on very large volume,
but here we cannot see such an effect.

7. Conclusions

Our numerical simulations surely show that the non-Hamiltonian systems we have studied
have a very interesting, complex behaviour, and show that the spherical spin model analogy
is probably not all of the story.
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Figure 19. As in figure 17 butN = 256.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

We have studied aging. We have found that on the timescales we could investigate (that
are, one should not forget, of the order of the largest timescales that have been used to
claim numerically that the pure model undergoes aging) systems with small perturbations
age, while systems with a large non-Hamiltonian term have a conventional behaviour (with
some care to be used when discussing the intermediateε case,ε = 0.2 for us). Our data
do not look compatible with theε−6 scaling one finds for the spherical spin model [1, 2].
Also the aging systems look different from the non-aging ones on all timescales, making
the possibility of a transient behaviour less favoured.

We have studied the time dependence of observables such as the internal energyE(t)

or q2(t). We have found clear power law decays for small perturbations.
Finally, we have studied equilibrium. Here we are looking at a regime that is very

different from the previously discussed one. Here we have also seen that for small
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(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

perturbations one finds results that are very similar to the ones of the pure model, but
we have also seen that for largerε small lattices do produce fake double peak structures in
the probability distribution of the overlap.

There is room, as is often the case, for more analytical and numerical work.
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